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Confinement effect on the interaction between colloidal particles in a nematic liquid crystal:
An analytical study
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Motivated by a recent experimental study on the interaction between colloidal particles in a confined nematic
liquid crystal [M. Vilfan, N. Osterman, M. Copié, M. Ravnik, S. 2umer, J. Kotar, D. Babi¢, and 1. Poberaj,
Phys. Rev. Lett. 101, 237801 (2008)], we discuss in an analytical manner how the interaction potential U
between spherical colloidal particles in a confined nematic cell behaves as a function of the interparticle
distance r. We show that the short-range potential follows a power law U(r)~r— as expected from the
quadrupolar nature of the interaction, while the long-range potential is dominated by an exponential function
U(r) ~d/r exp(-2r/d), where d is the cell thickness. These two regimes are interchanged at r/d=(0.8. This
behavior of U(r) is in a good semiquantitative agreement with the experimental finding.
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I. INTRODUCTION

Liquid-crystal colloids have been attracting growing inter-
est as a novel composite material based on a liquid crystal
for the last decade [1-6]. One of the intriguing properties of
liquid-crystal colloids is that colloidal particles can interact
via the elastic distortions of the host liquid crystal induced
by anchoring on the particle surfaces. Such interactions can
lead to a various superstructures of colloidal particles spe-
cific to liquid-crystal colloids, including linear chains [2,7],
two-dimensional crystalline structures [5,8], and cellular
structures [9].

It has been shown by an analytical argument that spherical
particles with weak surface anchoring, both normal and pla-
nar, exhibit a long-range quadrupolar interaction whose po-
tential is proportional to = [10-14], with r being the inter-
particle distance, and that the interaction between particles
carrying a satellite hedgehog defect in the case of strong
normal surface anchoring is of dipolar type; the potential is
proportional to 773 [12-16]. Even the possibility of
Coulomb-type potential (~7~!') has been discussed [13-15].

The first experimental measurement of the colloidal inter-
action in a nematic liquid crystal was carried out by Poulin
et al. [17]. They observed how a colloidal particle moves
under the influence of the distortion-mediated interaction and
determined the interaction force by equating it with a viscous
force. Later, Yada and co-workers [18] performed a more
direct experimental evaluation of the interaction force by op-
tical tweezers. In those two studies, dipolar interaction be-
tween particles carrying a hedgehog with strong normal sur-
face anchoring was measured. Several experimental studies
[19-24] have been devoted to a direct measurement of the
interaction force or potential between colloidal particles in a
liquid crystal.
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In most of those experimental and theoretical studies, the
host liquid crystal was considered as an infinite medium. In
real systems, however, liquid crystals has to be confined in a
container, or a cell, and confinement may affect the interac-
tion between colloidal particles. Nevertheless, little attention
has been paid to the effect of confinement, and, to our
knowledge, the only theoretical study of the interaction be-
tween colloidal particles in a confined nematic liquid crystal
was carried out by one of the authors [25,26]. It was found
that the interaction in a confined cell can be regarded as that
between infinite array of “mirror images” of particles (re-
cently the method of mirror images was used also in Ref.
[27] to discuss the interaction between a particle and a single
wall). Concerning experiments, no previous studies had put
emphasis on the effect of confinement until a very recent
study focusing on the confinement effect was carried out by
Vilfan et al. [28]. They used particles with planar surface
anchoring and found by careful experiments that when the
interparticle distance is on the order of or larger than the cell
thickness, the interaction potential decays exponentially,
rather than algebraically as expected in theories dealing with
an infinite medium. They also confirmed this exponential
behavior using numerical calculations.

In our previous study [25,26], attention was paid to the
form of the interaction potential profiles when the interpar-
ticle distance is on the order of the cell thickness and the
long-distance regime of the interaction was not discussed in
detail. Motivated by the experimental study by Vilfan et al.
[28], in this paper, we consider, in an analytical manner, the
effect of confinement on the long-distance behavior of the
interaction potential between colloidal particles in a nematic
liquid crystal.

In Sec. II, we present the calculation of the interaction
potential in a confined nematic liquid crystal. We deal with a
spherical particle with weak surface anchoring, around which
the director field exhibits quadrupolar symmetry. In Sec. III,
we discuss in detail how the interaction potential behaves
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Rigid normal anchoring

FIG. 1. Geometry of our nematic cell containing two colloidal
particles. Rigid normal anchoring is assumed at the cell surfaces
z=0 and 4. In Sec. III, we assume that the centers of the particles
are located at the midplane z=d/2. Here weak planar anchoring on
the particle surfaces is assumed.

with the variation of the interparticle distance. Section IV
concludes this paper.

II. CALCULATION OF THE INTERACTION ENERGY

We consider a nematic liquid-crystal cell with thickness d
that contains two spherical colloidal particles. At the cell
surfaces, we impose rigid normal anchoring, so that the nem-
atic liquid crystal is aligned perpendicular to the cell sur-
faces. We take the z axis perpendicular to the cell and the cell
surfaces are located at z=0 and d. The geometry of our cell is
illustrated in Fig. 1.

Before proceeding further we comment that there are two
ways of a general calculation of the interaction potential be-
tween colloidal particles in a uniformly aligned nematic lig-
uid crystal. One is a method developed by Lev et al. [12,13],
in which the director profile and the resultant interaction en-
ergy are determined by minimizing the total free energy of
the system: the sum of the Frank elastic energy and the sur-
face anchoring energy of the colloidal particles. One of the
advantages of their method is that when the surface anchor-
ing is weak enough, the interaction potential can be deter-
mined for particles with arbitrary shape and surface anchor-
ing profiles. However, to facilitate the calculation, their
method implicitly assumes that the director field is defined in
the whole system, even inside the colloidal particles. The
“extrapolation” of the director field inside the particles is
carried out, so that the linearized elasticity [Eq. (1) below] is
satisfied inside the particle.

Recently Pergamenshchik and Uzunova [14,15,27] pro-
posed a different method in which the “auxiliary” director
field inside the particles need not be taken into account. They
introduced spheres surrounding the particles, outside which
the director distortions are small enough to allow linearized
elasticity of the director. They showed that once the director
profiles at the surface of those spheres are known, the inter-
action potential can be determined with the aid of the
Green’s functions (from the electrostatic analogy, they re-
ferred to the director distribution at the sphere surfaces as
“elastic charge density”). However, they did not give any
prescriptions to determine the elastic charge density for
given particles.

In view of the advantage that the interaction potential can
be determined when the properties of the colloidal particles
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are given, hereafter we use the method of Lev and et al.
[12,13], which was later adopted by one of the present au-
thors [26] for a nematic cell with finite thickness.

For the calculations to be analytically tractable, we as-
sume that the distortion of the orientational profile of the
host nematic liquid crystal is small enough and no defects
are present. Therefore a Frank description in terms of the
director n can be used and the distortion of m is small
enough, so that it is described as n=(n,n,,1) with
|, ny,|<1. This treatment can be justified if we consider
colloidal particles whose surfaces impose sufficiently weak
anchoring (as we shall see below, we can treat both normal
and planar anchorings so long as weak anchoring is as-
sumed). Then it is sufficient to retain up to second-order
terms in n, and n, in the Frank elastic energy. We also adopt
the one-constant approximation and the Frank elastic energy
in terms of n, and n, is thus given by

d
Fh:% fdzrifo dz{(Vn(r)* + (Vny(r)}, (1)

where K is the elastic constant and r| =(x,y).
Next we write the surface energy due to the colloidal
particles in the Rapini-Papoular form [29] as

2
Fo=2 ¢ &S Ws)[w(s) - n(s)]. 2)
=1JQ

Here p=1,2 labels the two particles and (), represents the
surface of the pth particle. s denotes the point on the surface
and the anchoring strength at point s is given by W(s). The
unit surface normal at s is denoted by »(s). In the case of
planar anchoring W(s) >0 and vice versa for normal anchor-
ing. As noted above, we assume sufficiently weak surface
anchoring, so that WR,/K <1, in which R is the character-
istic size of the particles.

In the treatment of this surface energy, we make a gradi-
ent expansion of the director field n(s) around a point r®
which specifies the position of the pth particle. In the case of
spherical particles, it is reasonable from the symmetry to
choose the center as r”). When the particle radius is R, and
the anchoring strength W is uniform, the surface free energy
(2) becomes

2
Fy=2 2 ADn (), 3)
p=1 I=x,y
in which
&
AP = ———— 4
i &ri”) &r?”) “

with F=47TWR3/ 15. In Eq. (4), we have retained the lowest-
order relevant term in the gradients (zeroth- and first-order
terms are absent). For this truncation to be valid, the charac-
teristic size of the particle R, must be much smaller than the
characteristic length of the deformation of the host nematic
liquid crystal. Otherwise, higher-order terms in the gradients
should be retained in Ag’l’). Higher-order terms in the gradi-
ents can influence the short-distance behavior of the interac-
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tion potential. However, as shown in the Appendix, higher-
order terms give only a minor contribution in the long-
distance behavior.

In the cases of particles with general shape or nonuniform
surface anchorlng, the operator A () is modified. How to con-
struct A for general particles can be found in Ref. [26].

The total free energy of the system F' in the presence of
particles can be written as the sum of the Frank elastic en-
ergy F), [Eq. (1)] and the surface energy F, [Eq. (3)]. The
distortion profile of the nematic liquid crystal is the one that
minimizes the total free energy and thus satisfies

6(Fb+Fs)_

ony ®)
Substituting the profile minimizing the total free energy into
F=F,+F,, we obtain the total free energy in the presence
of colloidal particles. The result is formally written as F
=U(rW r(z))+22 F,(r?), where U(r,r?) is the interac-
tion energy between two particles and F (r(P)) is the self-
energy of one particle p. Here we do not repeat the argu-
ments for the separation of the total free energy into the
interaction and the self-energy parts. We also just mention
that the self-energy can be regarded as the interaction be-
tween a particle and two confining surfaces, and that F’ (r@))
is minimized when r(p)—d/Z [26]. We note that a recent ex-
periment [30] reported the levitation of a colloidal particle in
a nematic cell attributable to the self-energy in the sense
mentioned above, although the experimental setup, in which
the confining surfaces adopt planar alignment and the par-
ticle carries a hedgehog defect, is different from our theoret-
ical one.

The interaction potential U(r",r?) is explicitly given by
[26]

UG ) = - —— 3 AD A1, (2], A0 - /2
( 4 Klgy [ 3 )
=2+ ), (6)
where 7 ’)=r(f)—r(f ) and we have defined

1 * 1
hy(&n) = \’/52 N 772 + m2=1 { V/éz +(n- 2md)2

1 1
+—\r—§2+(n+2md)2_m_d}' (7)

In the following we discuss how U(r(",r?) behaves with
the variation of the interparticle distance.

III. DISCUSSION

As noted above, the self-energy of a particle is minimized
when it is located at z=d/2. Therefore, we restrict our fol-
lowing discussion to the cases where two particles are lo-
cated at z=d/2, that is, r(l)— 2)—d/2 In those cases, the
distance between the centers of the particles is equal to |r(12)|

A. Short-distance regime
In the case of small interparticle distance, the first term of

Eq. (7) in A (|r ,rgl)—rgz)) dominates. In other words, the
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cell thickness d is not relevant and the terms involving d in
Eq. (7) can be neglected. Therefore, the interaction potential
U(r",r?) in the short-distance regime becomes

F_Zaa<(9(9 &ﬁ)

U(r( 1 )’,.(2)) ~_

+
K 8}"21) 8r§2) &ri]) &riz) dri.l) dr;z )
» 1 oI 1 ®)
IrM — )] MO 7K |r(12)|5

In the case of spherical particles with weak surface anchor-
ing, quadrupolar interaction whose potential is proportional
to the fifth power of the interparticle distance has already
been derived in an infinite medium [10-13]. In our case,
when the interparticle distance is small enough, the effect of
confinement is negligible because the confining walls are far
away from the two particles as compared with their distance.
Therefore it is quite natural that the quadrupolar nature of the
interaction is reproduced in this short-distance regime. We
also note that the interaction is repulsive. It should be men-
tioned that when hlgher-order terms in the gradients are re-
tarned in the operator A, ,a contrrbutlon whose power in
!

B. Long-distance regime

Before discussing the long-distance regime, we recall that
h(&, ) defined in Eq. (7) can be rewritten as

hi(&n) = 2 Ko(mméld)cos(mmnl/d) - ! <y+ lné)

)

Here K| is a modified Bessel function and vy is Euler’s con-
stant. See the Appendix of Ref. [25] or Ref. [31]
for the derivation of Eq. (9). The last term in Eq. (9)
is unlmportant because it exactly cancels out in
(P 2] P = @)~y (P 2] AV 472 in U, r?). Using
Eq. (9) one can rewrite the 1nteractlon potential U(r(),r?),

or Eq. (6), as
I r2 {2 # )K()(mwz 12)|>]
m=1
& ( mﬂ'(r(]) (2))
cos

1
K d . (?rg ) (9
X Z
z?ril) 0 rgz) d

mﬂ'(ril) + rgz)) )
d

UG

— COS

rEl)=r£2)=d/2

2 167 < 2 )
D m'zALK()(% . (10)

m'=1

oK &

Here we have deﬁned a two-dimensional Laplacian A |

=2y (7(:;2” =2y ﬂ(r52‘)2 It should be noticed that only the
contributions from even m(=2m’) survive and the contribu-
tions from odd m vanish.

We also note that the modified Bessel function Kj(x) for

large x behaves as
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Ko(x) = e"‘\/g (11)

and decays fast for x— . Therefore, for large interparticle
distance, the term with m' =1 dominates in Eq. (10), and thus

% 167 2alr?
ALK()( w7l (12)

U r(l),r(2) ~
( 7K & d

Using Eq. (11), we can further simplify Eq. (12) to yield

23 [ d 2712
Ur(l),r(z) =— ex —L
=k N oy

(13)

In interpreting their experimental results, Vilfan er al. [28]
argued, using electrostatic analogy, that the interaction po-
tential can be written in the form of Ky(27r''?|/d) (in our
notation) and compared their results using its asymptotic
form exp(—277|r(l12)|/ d). Our analytical argument indicates
that the interparticle dependence of the interaction potential
is given by A | Ko(27r{1?|/d) for large interparticle distance
and that in the previous argument the two-dimensional La-
placian A | was missing.

C. Behavior of the interaction potential for all distances

Here we discuss the behavior of the interaction potential
for all distances. For this purpose, we use the second equality
of Eq. (10). However, the infinite sum there cannot be
evaluated analytically or numerically. Therefore in our nu-

merical calculation presented below, the infinite sum E:;,: |

is replaced with Erlno,ozl and we make use of MAPLE 11.02.

We have checked that no observable differences can be
found between the sums E;O,O:I and 2127?,0:], and therefore the
contributions from the terms with m’>100 can be safely
neglected. In the following we abbreviate |r{!?| as r.

In Fig. 2(a), we plot the rescaled interaction potential
U(r)/(T?/wKd’) as a function of the interparticle distance
rescaled by the cell thickness, i.e., r/d, for 0.05=r/d=5.
We find from Fig. 2(a) that, for r/d=0.8, the interaction
potential [solid red line, Eq. (10)] is indistinguishable from
that in the long-distance regime [dashed green line, Eq. (12)
with A | Ky(27r/d), or dashed-dotted black line, Eq. (13),
with an exponential form]. On the other hand the interaction
potential falls on the power-law behavior = [dotted blue
line; see Eq. (8)] for r/d=<0.8. Figure 2(a) also demonstrates
that Egs. (12) and (13) show almost the same behavior, at
least in the range of r/d plotted there.

To see the transient behavior around r/d==0.8 more
closely, in Fig. 2(b) we give the same but magnified plot for
0.6=r/d=1. We see from Fig. 2(b) that the interaction po-
tential can be expressed by the short-range power-law behav-
ior fairly well for 7/d=0.7 and by the long-distance regime
[Eq. (12) or Eq. (13)] for r/d=0.9. However, if one is inter-
ested not in the absolute value of the interaction potential but
in the logarithm of it as in Fig. 2(a), we can safely say that
the interaction potential is expressed by the power-law be-
havior (~r73) and the long-distance behavior [Eq. (12) or
Eq. (13)] interchanged at r/d=0.8.
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FIG. 2. (Color online) Log-log plots of the rescaled interaction
potential U(r)/(I'>/ mKd>) as a function of the rescaled interparticle
distance r/d for the range (a) 0.05=r/d=5 and (b) 0.6=r/d=1.
Solid red lines represent the full interaction potential calculated
using Eq. (10) with replacing the infinite sum with Z:no,ozl. Dotted
straight blue lines are the power-law behavior given in Eq. (8).
Dashed green lines correspond to Eq. (12), the long-distance result
with A | Ko(27r/d). Black dashed-dotted lines represent the expo-
nential behavior in Eq. (13).

In the experiments of Vilfan et al. [28], the short-range
power-law behavior is found for r=<0.9d, in good agreement
with our theoretical finding. We also note that, for the same
interparticle distance r, Fig. 2(a) clearly indicates that the
interaction potential becomes larger for larger cell thickness
d. This tendency can be found in a clear manner in the ex-
periments and numerical calculations presented in Ref. [28].

To conclude this section, we make a more quantitative
comparison of our results with experimental ones. In
the experiments of Ref. [28], the absolute values of
the interparticle potential are given for d=1.5X2R, and
1.8X2R,. From Fig. 2 of Ref [28], we find
that, for d=1.5X2R,, U(r=2R,)/U(r=2.7X2R,)
=U(r=0.67d)/ U(r=1.8d)=10*. From our theoretical re-
sults, we have

U(r = 0.67d
Ur=067d) _, 6. (14)
U(r=1.84d)

As mentioned below, for our calculations to be analytically
tractable, we have made a number of assumptions that may
not conform to the experimental situations. With this in
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mind, we can say that the agreement between the experimen-
tal findings and our result (14) is satisfactory.

D. Some further remarks on our theoretical approach

Here we recall several assumptions made for our calcula-
tions to be performed analytically. We assumed perfect nor-
mal anchoring at the cell surfaces and real surfaces with
finite anchoring strength, even when the anchoring is suffi-
ciently strong, might yield a small quantitative difference.

Concerning colloidal particles, we made the assumption
of weak surface anchoring and the smallness of colloidal
particles as compared to the cell thickness d. The former
guarantees that the elastic distortion of the host nematic lig-
uid crystals is small enough to enable one to expand the
Frank energy and retain terms up to second order in n, and n,,
[see Eq. (1)]. The latter allows a gradient expansion of the
surface energy and retaining the lowest-order relevant term
in the gradients [Egs. (3) and (4)].

In the experiments of Ref. [28], the diameter of the par-
ticle is on the order of the cell thickness, which does not
conform to our assumption of small particle size (in Ref.
[28], nothing was mentioned about the anchoring strength of
the particle surfaces, but in their simulations strong surface
anchoring was employed). Nevertheless, as we have seen in
Sec. III C, we find some semiquantitative agreement of our
theory with the experiments. One might wonder why we can
observe such a semiquantitative agreement in spite of the
difference between the experimental situation and the as-
sumptions made in our theory. As noted in Sec. II, when the
particle is not sufficiently small, we may have to retain
higher-order terms in the gradients in the operator Ai’l’) [Eq.
(4)]; our theoretical results presented above should be re-
garded as giving a leading-order contribution lowest order in
the gradients. Vilfan er al. [28] found in their experiments
that for d=1.5X2R,, the short-range interaction potential
obeys a power law U~r#, but 8=5.4 not 5 as expected
theoretically. This difference might be a manifestation of the
presence of higher-order contributions in the gradients. On
the other hand, as shown in the Appendix, higher-order terms
in the gradients in Ag’l’) yields only a minor contribution in
the long-range interaction potential. Therefore, our result in
the long-distance regime given in Sec. IIl B can be safely
applied even when particles are not necessarily small.

Concerning the anchoring strength, we note here that in
Ref. [13] Lev et al. introduced the concept of “coat,” outside
of which the elastic distortions are small enough to allow an
expansion of the Frank elastic energy and retaining only up
to second order in n, and n, as mentioned above. In the case
of weak surface anchoring, the concept of the coat need not
be introduced, because the integration of the surface anchor-
ing energy density [Eq. (2)] can be carried out at the actual
particle surfaces. On the other hand, when the anchoring is
strong enough for topological defect(s) such as a hedgehog, a
Saturn ring, or boojums to accompany the particle, the coat
should be taken large enough to cover the defects with strong
elastic distortions inside. In the case of planar surface an-
choring where the orientational profile outside the coat has a
quadrupolar symmetry, one can safely use our analytical
scheme to evaluate the interaction potential.

PHYSICAL REVIEW E 79, 041703 (2009)

We also note that the assumption of weak surface anchor-
ing leads to the conclusion that particles with normal anchor-
ing [W<O0 in Eq. (2)] give the same resultant interaction
potential as those with planar anchoring (W>0). That is,
particles with small interparticle distance experience quadru-
polar interaction irrespective of the type of surface anchor-
ing. The quadrupolar nature of the interaction for small in-
terparticle distance will remain valid even when the
anchoring is not weak, so long as the planar anchoring is
assumed. However, in the case of normal anchoring, a
spherical particle with large anchoring strength induces the
dipolar orientational profile around it due to a satellite hedge-
hog defect accompanying the particle [2,4,16]. In other
words, the shape of the coat loses one of the mirror symme-
try planes [13]. In that case, a quadrupolar picture of the
interaction is no longer valid, and therefore a different treat-
ment of the interaction potential will be necessary. Therefore,
when particles with normal anchoring are used, a special care
is required if one wants to compare their experimental results
with ours.

Here we comment on how the absolute value of the inter-
action potential depends on the characteristic parameters of
the particles. In the case of weak surface anchoring and small
particle size, the interaction potential is proportional to I'
o« W2RS, where the parameter I" was defined just after Eq. (4),
W is the surface anchoring strength, and R, is the particle
radius. Although the dependence of the interaction potential
on the particle radius might be obtained by experiments or
simulations, one has to keep in mind that the above Rg de-
pendence was derived in the case of sufficiently small R, and
weak surface anchoring. When the particle is not small as
compared to the cell thickness, or surface anchoring should
be regarded as strong, one must resort to the above-
mentioned coat description and/or retain higher-order gradi-
ents in Ag’,’) However, how to determine the operator Ag‘,’) in
the coat description is not a trivial problem. What one could
do is to compare the far-field behavior of the orientation
profiles of the “original” particle with strong anchoring and
that of a coat with specific values of W and R,. It may be a
difficult task, but once the coat is specified, one can deter-
mine the operator Ai’l’ ) and compare our theory with experi-
ments in a direct and quantitative manner.

IV. CONCLUSION

We carried our an analytical study as to how confinement
by two parallel surfaces affects the interaction potential be-
tween spherical colloidal particles in a nematic liquid crystal.
Our study was motivated by a recent experiment, together
with a simulation study, which found an exponential decay of
the interparticle potential in a confined nematic liquid crystal
[28]. We found an analytical formula on the interparticle po-
tential in a nematic cell whose confining surfaces impose
rigid normal anchoring. Our potential can be regarded as
consisting of two regimes: in a short-distance regime with
r=0.8d, where r is the interparticle distance and d is
the cell thickness, and the potential obeys a power law
U(r)~r=. On the other hand, in a long-distance regime
with r=0.8d, it behaves as U(r)~A K,2wr/d) or
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U(r)~ N exp(=2mr/d) with K, being a modified Bessel
function.

Before concluding this paper we mention that, although
our present study was restricted to the case of normal anchor-
ing on the cell surfaces, we can consider the case of planar
anchoring whose preferred direction is fixed to one direction
[26]. In that case the mterpartlcle potential depends not only
on the interparticle distance |r Lz | but also on the direction of
|r | with respect to the easy direction at the cell surfaces.
Therefore we can expect a richer behavior of the interaction
potential.

So far as we know, Ref. [28] is the only experimental and
simulation study focusing on the effect of confinement on the
interparticle potential in a nematic liquid crystal. Much re-
mains to be investigated in this subject and we hope that the
present study will stimulate further experimental or simula-
tion study in this direction.
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APPENDIX

In this appendix, we consider how the higher-order terms
in the gradients in the operator Ag‘,’) contribute to the inter-
action potential U(r) in the long-distance regime. From the
procedures developed in Refs. [12,13,25,26], in the case of
spherical particles, we find that the operator AP s given, u

’ zl g > up
to the second lowest order in the gradients, by

——+ .
+ v
&rg"’) d r§‘") <luvph &r(/f) d r(,,p) d rE;") d ri"’)

(A1)

=2r

zl

instead of Eq. (4). Here
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1
Stpwpn = Eﬁ) d*S W(s)(s - r(p))ﬂ(s —r?) (s - r(”))p
P

X (s =), v.(s) v(s). (A2)

Here (), denotes the surface of the pth particle. The integral
is taken over (), and d*S is the surface element. In Eq. (A1),
summations over repeated indices from x to z are implied.
After some calculations, the explicit form of AZ’ ) for [=x and
y is given by

R2
+ 20T

A(p) )
5 P ar? T

o & & &
+ + ,
a(rgp))3 9 r;”) &rip) 9 (r;p))3 &rip) 9 rgp)(r]((p))2
(A3)

where R, is the particle radius. In the last term of Eq. (A3),
k#z,l.

After some tedious but straightforward calculations along
the same line as in Sec. III B with the aid of Eq. (11), we find
that the asymptotic long-range form of the interaction is writ-
ten, instead of Eq. (13), as

) 23+ |d 2r
— — 5 - exp -
7K d r d
R <Rgd)
X —_— —_—
[1 + 58,2 +0 Ak (A4)

where r=|r{'?| as in Sec. III C. Equation (A4) indicates that
the ratio of the contribution of next-lowest-order terms in the
gradients to that of lowest-order terms becomes RS/ 2872, The
interparticle distance r is always larger than the particle di-
ameter 2R, and with the factor of 1/28, we can safely say
that the higher-order contributions in the operator Ag’ ) yield
only a minor effect on the long-distance behavior of the in-
teraction potential.
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